
The Open Tariff Model – Towards Efficient
Cost Comparison of Public Cloud Services

Jörg Gottschlich, Oliver Hinz
Chair of Information Systems III, Electronic Markets

Department of Economics and Law
TU Darmstadt

June 1, 2016

With the continuing growth of the public cloud service market, enterprises
increasingly face more complex and more frequent decisions to optimize their
IT infrastructure. When it comes to the question of on-premise versus cloud
deployment and provider selection in the latter case, cost figures are needed
for fact-based decisions. In the public cloud case, enterprises needs to com-
prehend and apply a diversity of tarification systems to compare potential
cloud providers. This effort slows down decision processes and reduces the
number of considered alternatives. Therefore, we present an Open Tariff
Model which provides a unified cost model to support cost estimates for IT
deployments in the public cloud by mapping diverse provider tariffs into a
common structure. Such a model helps to quickly compare provider costs for
cloud deployments or provides input to analyses of the cloud service market,
among other applications like cloud brokerage.

1. Introduction

Along with the growing market for cloud services [Moore, 2015], new challenges for the
sourcing of IT resources arise. Different service models like Infrastructure-, Platform-
and Software-as-a-Service (IaaS, PaaS, SaaS) enable a more fine-grained decision about
in- or outsourcing of IT components than before. Instead of either operate a whole IT
system on-premise or by a contractor, service-oriented architectures enable enterprises
to decide for each layer of a solution stack to either build it within their own systems
or buy it from a vendor and integrate it into their architecture. While this creates
more degrees of freedom for best-of-breed approaches (i.e. to choose the best solution
for every single aspect of a business problem) it also increases the complexity of IT
procurement and governance. For example, when a company creates an IT solution

1

for its customer support processes, it has a range of deployment options: 1) Host a
licensed software on hardware in-house, 2) lease virtual machines (VMs) via IaaS to
install the application, possibly combined with PaaS services like managed databases
or 3) subscribe to a turn-key SaaS solution which provides convenient operations but
usually also limited customization possibilities. Each option has its pros and cons, and
evaluating all these – and potentially more – options causes high effort.

In addition, standardization increases the agility of IT solutions while reducing ven-
dor lock-ins and path dependencies. Enterprises can more easily extend or move their
infrastructure independent of its current deployment space which might create new op-
portunities to optimize IT provisioning. With these developments on a more fragmented
and dynamic market, enterprises face a higher number of solution alternatives and short-
ened decision cycles to optimize their infrastructure layout.

This generates a need for decision support to efficiently compare vendors and their
products and to tap the full potential of cloud computing as technology. Hence, some
approaches for cloud service selection have been proposed (e.g. [Rehman et al., 2011,Garg
et al., 2013, Repschlaeger et al., 2013]). However, still lacking is a comprehensive cost
model to describe full costs of a cloud solution in the public cloud. Previous works
focus on service features and quality, but disregard cost or use simple hourly prices.
Cloud providers created diverse and complex tariff models involving many parameters
to estimate the cost of a complete setup including computing nodes, storage, traffic,
network components and others. For a projected system setup, such a model would
avoid having to understand and evaluate different tariff systems when comparing offers
from different providers.

As an example, take the tariffs of two providers: Amazon Web Services (AWS) [Ama-
zon Web Services, 2015] and ProfitBricks [ProfitBricks, 2015]. AWS offers compute
instances as a fixed bundle of CPU cores, memory and, partly, storage at a certain price.
For example, the t2.medium instance, at a price of $0.052 per hour in their US East
data center, has 2 CPU cores, 4 gigabyte (GB) memory and no storage included while
the m3.xlarge contains 4 cores, 15 GB memory and 2x40 GB local SSD drives at a price
of $0.266 per hour. With these bundled offers, a consumer who needs more memory also
receives (and pays for) more CPU cores. Moreover, a direct price comparison between
providers is difficult if they have slightly different bundles of CPU, RAM and storage.
Other providers, like ProfitBricks, charge per component. Consumers can choose the
desired number of cores, size of memory and storage space. The price is composed of
the hourly unit prices (US data center): $0.018 per core per hour + $0.0053 per GB
memory per hour and $0.04 per GB per month for block storage. Centron, another
provider offering free combination of components, offers 250 GB of free traffic [Centron
GmbH, 2015] while the other two offer not more than 1 GB. On the other hand, Cen-
tron charges in-coming and out-going traffic, while the other two only count out-going
traffic. These are just three providers and some of their specific regulations. When we
examined a larger sample of public cloud tariffs (cf. Section 4), we found that pricing
among provider tariffs differs along a multitude of dimensions for realistic infrastructure
setups:

2

• Hourly prices for virtual machine instances depending on CPU cores, size of RAM,
and internal storage

• Extended storage options (e.g. block storage, SSD, redundant storage, content
delivery networks, backup storage)

• Traffic (e.g. different volumes, different regions, different networks)

• Datacenter Location (e.g. US, Europe, Asia, South America)

• Operating system and software applications (e.g. Windows and other proprietary
software causing license fees, Ubuntu Linux, RedHat Enterprise Linux)

• Network components (e.g. firewalls, load balancers, static IP addresses)

• Utilization (e.g. 24/7 operations, peak demands, nightly jobs)

• Deployment period (hours to years, e.g. test system, project infrastructure, core
business infrastructure)

• Discounts (e.g. volume discounts, prepay discounts)

Unit prices can differ between providers on each of these dimensions without neces-
sarily revealing a generally inferior or superior providers in terms of total cost over all
dimensions. Depending on the resource needs of an IT setup, a holistic cost comparison
of provider tariffs needs to consider all these factors as any of them could be a cost driver
for a certain application purpose that turns an interesting offer based on e.g. hourly VM
pricing into an inferior offer (e.g. if traffic pricing is too high for the intended (high
traffic) application) – or vice versa. But evaluating the total costs of all parts causes a
high effort for a request-for-proposals process or cost comparison of in-house solutions
versus cloud deployment.

From a provider’s perspective, it is also increasingly difficult – particularly for small
vendors – to stand out in the competition and differentiate their offers in a market
moving quickly from innovation to commoditization. With increasing competition and
substitute solutions to their products, their communication and acquisition efforts rise.
Especially when they are not able to communicate their advantages efficiently, customers
might focus solely on price as decision criterion which could lead to a lemon market where
a quality-focused differentiation strategy fails to be effective [Akerlof, 1970].

Up to date, we found no model in literature which is able to store the pricing in-
formation of the cloud service market such that comprehensive market analyses can be
conducted. For research, such a model provides detailed price and cost information
for analyses and decision frameworks. For practitioners, such a model enables efficient
vendor comparison of cloud deployments for fact-based business decisions.

In order to compute prices for different provider tariffs, we decided to create a tariff
model that formulates a superset of all tariff properties we find in the market and hence
enable a unified specification of provider tariffs. By mapping the providers’ tariffs into
our generic model, we are able to compute prices for any resource combination, which

3

Figure 1: Tariff Unification by the OTM

can be expressed using the language of the model (Figure 1). Therefore, we introduce
the Open Tariff Model (OTM) which is extensible for yet even unknown types of cloud
resources, but still provides appropriate details for price computation such as pricing
conditions, multi-part pricing and discounts (cf. 4). Thus, our model strives to unify
provider offers for easy vendor comparison and to deliver precise cost estimates for
IT infrastructure decisions very efficiently (e.g. for a vendor selection or make-or-buy
decision).

We considered other ways of achieving price information for decision support. Most
preferable would be a unified API to query any provider for prices of a resource bundle
(e.g. similar to the approach in [Amato & Venticinque, 2013]). However, due to missing
established standards of resource specification for such requests for proposals (RFPs)
and appropriate technical API implementations, it is no feasible option. Some providers
offer calculators on their websites to request prices for resource descriptions which could
be queried for price estimates, but they are usually difficult to operate automatically and
one would still need to translate a resource request into the provider’s own format. Also,
for the many providers who do not offer price calculators, this solution is not feasible.
Hence, we decided to create a generic tariff model and take the one-time effort to map
provider tariffs into and use it as a common basis for price computations (Figure 1).

To achieve this goal, the paper continues as follows: After introducing preceding and
related efforts to this problem in Section 2, we share the findings from our tariff study
in Section 4. We discuss our methodology in Section 3. Then, we introduce the model
components and their relations (Section 5) and show how to apply them to model a
common provider tariff in Section 6 for evaluation purposes. Finally, we conclude our
work in Section 7 and comment on potential future improvements.

2. Related Work

In literature, we find a considerable amount of cloud service description and comparison
approaches with different scopes and targets. Most of the works focus on technical or
feature comparison of cloud services starting with simple performance benchmarks up to
extensive broker approaches. However, many papers disregard cost at all or use simple
hourly prices to model cost. While this might be sufficient for a simple comparison of

4

virtual machines, it neglects important cost drivers for real world infrastructure setups,
such as storage or network features.

One of the few works that puts a strong focus on advanced price and cost modeling
is El Kihal, Schlereth, and Skiera (2012). They suggest two methods to make IaaS
price comparison more transparent: Hedonic pricing which decomposes the price into
contributing values of the tariff’s characteristics and a new-developed pricing plan com-
parison which aims to identify the most favorable requirement profile for each provider
compared to its competitors [El Kihal et al., 2012]. They validate their approaches
in an empirical study and use their results to compare providers. However they only
consider VM pricing and dismiss other important tariff factors like network resources.
In addition, they start from a predefined set of VM configurations and prices from a
fixed number of providers. This information thus still needs to be compiled from tariff
information. The OTM would provide such detailed information and hence complement
their work on the input side and offer possibilities to enhance such tariff analyses.

Other works focus on a top-down approach and suggest a market-oriented model, i.e.
a model that allows for negotiation between consumers and providers (e.g. [Siebenhaar
et al., 2011,Roovers et al., 2012,Wang et al., 2013]). For example, Roovers et al. (2012)
suggest an auction model with resource descriptions based on tagging to express asks
on which providers can bid [Roovers et al., 2012]. However, these approaches have in
common that they require an interactive role of the provider to enable interactive pricing.
Moreover such a business model faces a startup problem in a two-sided market, i.e. the
so-called chicken and egg problem, which ususally hinders the adoption in the market in
the start.

Another type of related work develops complex decision frameworks for cloud service
adoption, quite frequently by applying a multi-criteria decision method such as an An-
alytical Hierarchical Process (AHP) (e.g. [Menzel et al., 2013]). Garg et al. (2013),
for example, provide a comprehensive catalogue of a benchmarking and measurement
environment for cloud providers [Garg et al., 2013]. Their work is based on the ser-
vice measurement index (SMI) by The Cloud Service Measurement Initiative Consor-
tium (CSMIC) [The Cloud Service Measurement Initiative Consortium (CSMIC), 2011],
which is used to develop a Service Measurement Index Cloud framework SMICloud [Garg
et al., 2011]. SMICloud contains sixteen different aspects modeled as key performance
indicators, which are extracted from the SMI and which are highly relevant for comput-
ing in cloud environments. The paper however disregards important aspects like fixed
prices, hidden pricing components and different tariffs for a single cloud provider.

Patiniotakis et al. (2014) extend the SMICloud model (by Garg et al.) on different
levels by introducing more qualitative factors such as Contracting Experience or Tech-
nical competency of the support employees and suggest a recommender approach for
cloud services which distinguishes between precise quantitative service attributes (e.g.
response time) and imprecise qualitative, more intuitive characteristics (e.g. reputa-
tion). With their approach they want to enable users to explicitly express fuzzy levels
of requirements and apply a fuzzy multi-criteria decision making method to arrive at a
flexible preference-based ranking of cloud services [Patiniotakis et al., 2014].

Repschlaeger et al. (2013) use a survey among IT executives to define priority weights

5

for an AHP for non-core business applications. Thus, they quantify the importance of
factors such as flexibility, costs and performance for IaaS provider selection in ”general”
business contexts. However, their approach stays abstract and while they provide de-
tailed evaluation criteria, they do not involve actual market data for their cloud service
comparison.

While these approaches target the problem of cloud service comparison, they neglect
the aspect of data provisioning. For a regular application in decision making, the ap-
proach of ad-hoc research is not feasible. Instead, a sustainable database of market data
is necessary for efficient decision-making. The OTM enables the construction of such
a database by providing a flexible generic model to store the providers’ products and
pricing information in a comparable way.

The Distributed Management Task Force (DMTF) has published an extensive speci-
fication of IaaS resources with their Cloud Infrastructure Management Interface (CIMI)
specification [DMTF, 2013]. This standard is targeted at technical operability between
different cloud providers and provides very detailed properties such as operating status
attributes of resources. Thus, for the purpose of product comparison, their model is
very extensive and thus carries large overhead. In addition, standardization processes
cause inertia. For a cost model serving business decisions, which strive to optimize
infrastructure on the quickly evolving cloud service market this could oppose a major
disadvantage.

The Open Cloud Computing Interface (OCCI) standard for Infrastructure of the Open
Grid Forum has a similar focus on technical interoperability [Metsch & Edmonds, 2011]
and while more light-weight than the CIMI specification, it misses certain attributes
important for commercial resource comparison. In addition, the latest release of the
standard is dated April 2011 and its future access of adoption is uncertain. Therefore,
we strive for a light-weight bottom-up standard model instead of a comprehensive top-
down model (cf. Section 3.2) to support an efficient vendor comparison.

3. Methodology

3.1. Design Science

This paper follows the Design Science paradigm which constitutes an approach rooted
in the engineering sciences [Simon, 1996]. The goal is to solve a certain problem by
providing an artifact design and evaluating its suitability to solve the problem. Hevner
et al. (2004) provide several guidelines to systematically achieve this goal which we
follow in the development of our proposed model concept [Hevner et al., 2004].

The introduction and the theoretical foundation in Section 1 and 2 show the relevance
of the topic in the context of research. The importance of solving a business problem
such as IT infrastructure sourcing efficiently, as pointed out in Section 1, becomes evident
in the higher complexity of sourcing options and the shorter decision cycles imposed by
increasing market evolution and product flexibility that come with cloud computing.

Our artifact, the Open Tariff Model, addresses this problem and provides a solution
(Section 5) which is the result of the rigor search based on market research and induction

6

Figure 2: Two ideal models of standardization efforts

from a tariff analysis (see 3.2) for a solution to the identified problem of cloud service
cost estimation. We evaluate our design and show its application in Section 6. In our
concluding remark (Section 7), we summarize our research contribution. All in all, this
paper communicates our research to foster discussion as well as further research and
applications in this area.

3.2. Standardization Approach

To create the OTM, we conducted a review of several different provider tariffs and
identified common structures to destill the design of the OTM (see Figure 1). Providers’
tariffs can differ quite a lot in detail, but usually there is a good share of similarity,
which lowers the effort of implementing a generic model.

This work seeks to develop a data model which is able to capture the cloud service
market data on an appropriate level of detail, down to product features relevant for
application scenarios. Therefore, we have to standardize the actual products and mar-
ket conditions to be able to capture them in a common model. Figure 2 shows two
different archetypal approaches to standardization: Top-down standardization which
involves a normative process of defining theoretical constructs and then impose them
on the problem domain (the cloud service market in our case) and bottom-up which
strives to define standard constructs by identifying common structures and abstracting
them into a generic form. This latter method is comparable to the Grounded Theory ap-
proach [Glaser & Strauss, 2009] which iteratively refines structures identified in collected
data.

The latter method works well to extract a standardization model from such a com-
plex domain with the advantage that it does by design match the market requirements.
A special advantage for a service comparison application, as intended here, is that the
model generation already focuses on the comparable product features. Product specifi-
cations unique to one vendor only, which are thus not comparable, have lower priority

7

(but can still be added). In addition, a model derived with this inductive approach does
not suffer from acceptance barriers – as some top-down standards do – as it embraces
what already exists and ensures compatibility.

On the downside, this approach has a passive position towards market development,
i.e. it does not push for harmonization of services in the market, but instead takes the
complexity and heterogeneity as given facts to which it adjusts. Normative standards
have the chance to align structures and improve service comparability by affecting the
service definition by providers. Nevertheless, we are confident that for the purpose
of market transparency, the inductive approach has advantages in terms of efficiency,
flexibility and effectiveness as it can quickly react on changes in the market.

When conducting the tariff review, we started with a few heterogeneous tariff examples
and built a first draft of the model from those. We then checked it against further tariff
examples to see if the draft holds. Upon evolvement of new requirements, we adjusted
the model and checked it back with the first set of tariff examples. When the model
worked for all chosen samples, we took some more samples to see if their requirements
hold and continued this iterative refinement. In addition, we frequently checked for
opportunities to reduce complexity. In the end, we built our model upon several hundred
tariff schemes of around 30 providers of different regions and sizes, covering more than
half of the market volume and all major providers [Preimesberger, 2015].

4. Market Overview from Tariff Research

Based on our tariff analyses, we identified some entities which allow to build a generic
tariff model (compare Figure 3). To manage complexity, we start with a simple structure
and divide the tariffs into two components: 1) The different cloud service types which
a user can purchase with their specific features (which we call Resources in the model)
and 2) The pricing part which describes how costs are calculated for these resources
given a certain quantity and usage period and other usage-specific parameters (cf. 5.2.1,
Table 2).

As the market is constantly developing and changing, this is only a snapshot of the
current situation. While the basic building blocks (e.g. VMs, Storage) are quite stable,
the features of those services may extend and also providers work to introduce new kinds
of services in their struggle for competitive advantage. This section gives some insights
on the complexity of cloud service tarification which helps to understand the subsequent
model formulation.

4.1. Common Cloud Service Classes

While cloud services often differ between providers in technical details, we identified
some common services classes providers usually offer. We will introduce those classes
one by one below. Larger providers usually have several data centers geographically
spread around the world with a concentration in North America and Europe. So in
addition to the problem of provider choice, subsequently, consumers also have to choose
a data center location which has consequences for issues like data protection legislation

8

and connection latency. Also, some providers do not offer all of their products in every
data center.

4.1.1. Compute Instances (Virtual Machines)

The core part of IaaS cloud services is a virtual server instance which usually consists
of one or more CPU cores, a certain amount of memory (RAM) and, usually, some
storage capacity. From a tarification perspective, there are providers offering bundled
sizes of compute instances (e.g. Amazon Web Services, Google Compute Instances) with
each having a fixed amount of cores, memory and storage. Other providers allow you
to configure the desired amount of cores, memory and storage without pre-configured
relations (e.g. ProfitBricks, CloudSigma) and charge per each of those components
(hence we refer to them as component-based provider tariffs). Component-based tariffs
have an advantage for users with skewed resource needs (e.g. needing a lot of RAM,
but not so much processing power) as bundles usually scale in all dimensions and hence
with more memory you would also need to purchase more CPU cores. Bundled tariff
providers encountered this disadvantage by offering ”high mem” or ”high compute”
instances which put on overweight on the respective component to better suit these
skewed demands. For a pricing comparison of compute instances between component-
based and bundled tariff providers, we need to first compose the bundled instance from
the components (CPU, RAM and possibly storage) to arrive at a comparable price for
the instance.

Pricing itself usually involves an hourly fee. Upfront payments for a certain time
period to reduce the variable pricing per hour are usual, e.g. one or three year plans
with a payment at the beginning and then a reduction in hourly prices for this period.

4.1.2. Operating System (OS)

An operating system is necessary to run a VM. Usually, a certain Linux flavor is in-
cluded at no additional cost. But for premium OS versions, a surcharge applies, specifi-
cally when deploying Microsoft Windows, but also some Enterprise Linux versions from
vendors like SuSE or RedHat. Windows versions often come with additional software
packages installed such as Microsoft SQL Server or IIS (web server) which results in
higher charges. If there are charges, they are usually a surcharge on the hourly rate of
the VM, sometimes having different prices depending on the total number of cores in a
VM (e.g. Google).

When configuring the VM at a provider, the user can select from a choice of OS images
which subsequently will be deployed on the VM.

4.1.3. Storage

Storage services come in wide variety of purposes and technologies which causes differ-
ences in tarification. VMs can have internal storage which appears like a built-in hard
disk from an OS perspective. It is created and destroyed with the VM itself. Block stor-
age is attached over the network and mounted as a volume. It usually is independent

9

from the existence of a VM and serves for permanent data storage, but volatile variants
are available as well. Snapshot storage saves state freezes of VMs at a certain point in
time which can be restored or cloned for other purposes. Image storage enables a user
to upload customized images of VMs, e.g. a pre-configured Linux variant for a certain
business use, which the user can deploy on new VMs. For backup purposes, providers
sometimes offer specific storage products with features specifically suited for this purpose
(e.g. geographically redundant, cheap but with slow access).

The exact storage technology should theoretically be of no interest to the user, as
(s)he procures a service and not a device. But if technology affects features of the
services, it needs to be considered. For example, some tariffs offer fast solid state drives
(SSDs) compared to slower magnetic drives – as the former are more expensive than the
latter, but also offer a higher performance, we need to consider those features in a tariff
comparison.

The most common pricing scheme for storage is per capacity per time (e.g. GB/-
month). Prices differ with the outlined purpose specialization mentioned above and the
technology involved. Apart from the storage capacity, the input/output operations per
second (IOPS) determine the performance of storage systems as it denotes how much
operations the device is able to process in a certain time [Nobel, 2011]. Some providers,
such as AWS, use I/O operations as a price-determining factor and put a price on e.g.
an amount of 1 million I/O operations [Amazon Web Services, 2015].

4.1.4. Data Transfer (Traffic)

Data Transfer (Traffic) is an essential element of every IT and cloud setup. Incoming
traffic (ingress) is usually of no charge, but there are some exceptions (e.g. AWS charges
incoming traffic when an external IP address is assigned to the interface [Amazon Web
Services, 2015]). Outgoing traffic (egress) has to be distinguished into several scopes,
depending on the target of the transmission. Within the same data center or data center
zone traffic is usually free. Also if traffic stays within the provider infrastructure, e.g.
accessing different services of the provider hosted at different locations, the out-going
traffic often is handled as internal traffic even when spanning data center boundaries.
However, most outgoing traffic pricing schemes either treat the whole Internet as one
destination or differ by large geographic world regions (e.g. Asia/Pacific, Europe, North
America). Pricing is either based on data center location or the destination of the
connection – which means traffic cost either depend on cloud users’ choice of data center
location or on the geographic distribution of their clients.

A special case for traffic is a content delivery network (CDN) service. These are
distribution networks for digital content, e.g. software or music, which are spread around
the globe and specialize in providing a fast and reliable service of content delivery. If
offered, this service usually has special traffic pricing. There are also independent (non-
cloud) provider companies who offer such a service.

10

4.1.5. Network features

An IT infrastructure deployment needs network components to be complete. Cloud
providers offer these services as accessories to the other infrastructure components. A
load balancer helps to distribute incoming requests over a number of processing VMs
to scale load and increase availability by redundancy. A firewall filters traffic by rules,
limiting protocols, ports, sources or destinations, e.g. allow only web page requests to a
web server. The pricing of both traffic processing components is based on deployment
time, traffic processed, per rule, or a combination of those.

Another network component is a static IP address which assigns a fixed IP to a VM
to make servers available under a stable address. They are usually charged on a time
basis (e.g. per month), but often they are free when assigned to a running instance
(e.g. [Amazon Web Services, 2015], [Google, 2015]).

Especially for auxiliary network services, there is a large diversity among providers
who try to differentiate with advanced network services. For comparison purposes,
we included the most common services here which offer comparable features. More
specialized services should be added as they are adopted by market participants.

4.2. Pricing Conditions

Based on the tariff review, we identified some pricing conditions we find in the market and
classify them to prepare the formulation of a common model. Like in other comparable
markets, different pricing schemes increase the effort of price comparison. By integrating
the components used by cloud providers in the model, we are able to compute cost using
our common model and hence efficiently create cost comparisons for a certain cloud
setup.

Due to their service nature, cloud products usually have a price based on time units
(per hour, per month). A second dimension is the capacity of the service, e.g. for storage
the size in gigabytes or a countable number of instances (e.g. one, two, three static IP
addresses) – we summarize this second dimension with the term quantity of the cloud
resource. There are also prices with both or none of these dimensions. If there is no
quantity assigned with a price, we have e.g. only ”EUR/hour” or if both quantity and
time are missing, e.g. for one-time fixed fee, we would only have ”EUR”.

Next to on-demand pricing with a price per hour, we also find two-part tariffs, con-
sisting of an upfront payment for a certain period and a (reduced) variable price per
hour [Amazon Web Services, 2015]. Monthly or even annual payments with no hourly
pricing also exist.

Apart from that, we also identified some conditions on pricing which we need to
consider in order to select the correct price:

Applicability Some prices are only applicable if a certain amount of a resource is con-
sumed. For example, having ranges from 0-5 gigabyte of traffic at price p1 and 5-10
gigabyte at price p2, when we determine the price for 8 gigabyte, the price would be
p2. So depending on the amount of traffic per month, we would need to apply a differ-

11

ent price. Consumption-based price differentiation is a frequent scheme also for other
resource types.

Partitioned Pricing In contrast to applicability which denotes the price for the total
consumption quantity, partitioned prices defined different prices for different shares of
the total consumption. With the example above, we would split up the 8 gigabyte into
5 ∗ p1 and 3 ∗ p2 and hence apply a different price for each portion of the total quantity.

Booking Periods Not all tariffs are available on-demand and hence have a certain
minimum booking period which affects the total cost as resources have to be paid for
the total period. In exchange, commitment for a longer period usually lowers the variable
price and hence, depending on the total deployment time of the cloud resources, brings
a cost advantage compared to on-demand tariffs.

Minimum Charges Some tariffs have a minimum revenue. If the actual cost for resource
consumption is above this amount, it has no effect, but for smaller setups it needs to be
considered for tariff comparisons.

So cloud service pricing quite often involves processing of several prices per component,
either in combined or alternative application.

4.3. Discounts

Discounts are relative price changes depending on conditions. We found conditions such
as:

Spend A common discount condition is the achievement of a certain spend level (mini-
mum revenue) within a certain time period (e.g. a month or a year)

Utilization Commonly, providers do charge no cost (or substantially less) to customers
for compute instances which are not running, but are suspended. Because this
decreases revenue, providers have an objective to increase uptime of customers.
Discounts based on utilization, i.e. actual run-time of reserved resources, might
stimulate the customer’s willingness to extend run-times. Thus, they may provide
a discount if the user reaches a certain range of monthly utilization. Google, for
example, offers bands of 0-25%, 25-50%, 50%-75% and 75%-100% with respective
discount percentages [Google, 2015].

Period commitment The commitment for a certain time period is quite common in
business and enables vendors to spread their acquisition costs over a longer period
and retain customers. Hence, some providers incentivize such an agreement with
a discount.

Payment terms If customers are willing to pay in advance for a projected consump-
tion, the provider has more certainty about his revenues and customer retention.
Therefore, some providers grant discounts if the consumer pays in advance.

12

Figure 3: The OTM entity model

Providers define discounts on different levels. They can either apply to revenue with
one specific cloud service (resource level), all services within one tariff (tariff level) or
apply to the consumer’s total revenue volume with the provider (provider level).

Thus, for evaluating potential discount amounts and net costs with a provider, the
conditions have to be checked and the corresponding cost base has to be estimated.
Given the uncertainty with the on-demand character of cloud services, assumptions have
to be made. The model presented in this paper helps to quickly estimate optimistic or
conservative scenarios to gain better insight in the effects of discounts on total cost at a
certain provider.

5. Model Formulation

In this section, we introduce the actual model components and their relations, before we
present the details of price and cost computation. Figure 3 provides an overview of the
model. The central entity of our OTM is a Tariff entity which belongs to a Provider

and a data center location (DcLocation). A Tariff holds a list of TariffItems which
connect one Resource with a list of applicable Prices and Discounts. We split the
technical information about the product a provider offers and the commercial information
about how the provider prices its product. While the product information is represented
by the resource hierarchy, all pricing information is included in the Price and Discount

entities. This allows for a clean separation of product and pricing and helps to update
changes in prices independently from changes of the technical product itself.

As convention, we use over-lining for the upper bound of a range and underlining for
the lower bound. Boolean values are translated to numbers using 1 for true and 0 for
false.

13

Table 1: GenericResource properties

Field Description

name Display name of the resource (e.g. ”Storage”)
subtype Further classification for this resource type (e.g. block/snapshot stor-

age)
validValues The valid quantity values the provider offers for this resource, see

App. A.2
quantity Specifies an amount of the resource

5.1. Resource Model

In the OTM, we call all kinds of services a user can purchase from a cloud provider
resources. To keep the model flexible and extendable, we model specific resources as
more specialized descendants of a GenericResource type, which holds the properties
common to all resources (cf. Table 1) and enables a common implementation of cost
calculation for all resources. An extension of this hierarchy enables further specialization
or introduction of new resource types without restrictions.

In addition to its name, each resource contains a subtype property to distinguish
more specific kinds of a resource without introducing new classes for similar resources
which have the same properties and actions. For example, specific storage types like
snapshot storage (intended to store VM image states) or High-IOPS store (very fast
storage) are both storage resources. In this case, the we would have two instances of the
StorageResource entity, one with the subtype snapshot and the other with subtype

highio. We can use a joint set of common storage properties to describe them (though
with different values).

When describing a provider’s offer, we need to store the available quantities of a
certain resource (e.g. the user can choose from 1, 2, 4, 8 or 16 cores, but no value
in between or the amount of storage must be between 10 and 1000 gigabytes). So to
describe provider offers, validValues stores a discrete list or continuous range of valid
values (cf. App. A.2) which holds the resource unit sizes offered by the provider. For
example, a provider offers storage only in 10 gigabyte packages – so a consumer needs
to purchase 30 gigabytes if he asks for 25 gigabytes.

If the resource entity stores a specific instance of a resource description, e.g. for
an VM which has two cores and 16 gigabytes RAM, the quantity attribute holds the
instantiated value, in this case two for CPU cores and 16 for RAM size in gigabytes.

Because the unit of measurement for those quantities differ by resource type, we
implement a generic quantity model (cf. App. A.1) so we can handle the different units
of measurement for resource quantities and prices in a unified way. In addition, we keep
the model extensible for future resource types and their units of measurement. This
quantity model also allows us to specify data units in megabyte, gigabyte, terabyte etc.
and ensures correct conversion. Appendix A.1 explains the quantity model in detail.

During our market research, we identified some common resource classes (cf. 4.1)

14

which we model as specialized resources, i.e. as descendants of a GenericResource.

Computing VmResource models a bundled VM instance with a certain amount of CPU
cores, RAM size and disk storage (if applicable). This is the resource used for providers
offering bundled compute resources (such as Amazon Web Services or Google Compute
Engine). For component-based providers, we define CpuResource and RamResource.
These types model a CPU and RAM unit for providers which offer individual VM
configuration. While VmResource is self-contained, we need to combine CpuResource

and RamResource (and, potentially, a StorageResource) to model a usable compute
instance.

OsResource contains information about available operating system options a provider
offers within its tariff and keeps information such as OS family (Linux, Windows etc.),
vendor and version.

StorageResource describes all different kind of storage space providers offer as services
(e.g. internal, block, snapshot or backup storage).

TrafficResource contains information about the type and quality of traffic. Usually,
depending on the direction and scope of traffic, different prices apply. Hence, if maximum
precision is needed, we need to distinguish not only between incoming and outgoing
traffic (ingress and egress), but also if the traffic is within or across boundaries such as
the local data center, the world-wide infrastructure of the provider, the ”open” Internet
and which continents or regions. For this paper, we use a simplified specification which
only differs between ingress and egress from and to the Internet. Because traffic within
the provider’s infrastructure is usually cheaper, this is a valid upper boundary for traffic
costs. By extending the properties of TrafficResource, we can build complex data
stream models to distinguish the exact flow of data traffic and apply individual prices
on these different resource configurations.

NetworkResource models different network services such as firewall rules, static IP
addresses or port forwarding services.

As discussed, these are the common resource types, we predefine from our market
research. For new kinds of cloud services, we can easily inherit new resource types from
GenericResource and model them with their specific properties to extend the OTM.

5.2. Commercial Model

Now that we introduced the technical part of the OTM, we turn to the modeling of
costs. We introduce how we arrive at total tariff cost from single prices and how we
apply discounts on cost.

15

Figure 4: Cost Aggregation Scheme for OTM cost modeling

5.2.1. Cost Aggregation Scheme

A Tariff as the central entity of the OTM connects a product a certain provider offers
in its datacenters with the prices including requirements such as minimum time or quan-
tity and other conditions. Therefore, besides the attributes a Tariff holds, it keeps a
list of TariffItems which connect one resource with the corresponding prices and, if
applicable, discounts.

A TariffItem contain several prices or discounts for a resource to model the different
pricing conditions (cf. 4.2). Therefore, a Price contains the specific conditions which
apply to it. All prices assigned to a TariffItem will be summed up, with their value
being computed according to their specific conditions (see 5.2.2). We model discounts
in a similar way (see 5.2.3).

Figure 4 gives an overview of the cost aggregation scheme applied by the OTM. We
start with the computation of all single prices pi of a TariffItem, then aggregate the
results to the total TariffItem cost cj , on which we apply the discount factor and
compute the absolute Discount value on resource level dj (cf. 5.2.3). The sum of all cj
will result in the Tariff cost before discounts CT+ on which we apply the discount factor
for Discounts on tariff level D. We add up the resulting discount values to the total
discount value D and deduct it from CT+, so we arrive at Tariff cost after discounts

16

CT . Equation 1-3 reflect this computation for a Tariff of n TariffItems.

CT = CT+ −D (1)

CT+ =
n∑

j=1

cj (2)

and

D =
n∑

j=1

dj (3)

For a cost estimate, we need to specify a deployment setup, i.e. define a request. Such
a request consists of a list of k resources and some parameters which are listed in Table 2.
The OTM enables us to determine the cost of a request for all tariffs stored with the
model such that we can compare the total cost for each tariff for this request.

We need a target resource quantity and time for which the cost should be determined.
We denote Qk as the desired purchase quantity of resource k and T as the purchase
period for all resources. Due to pricing conditions (e.g. a minimum booking period)
for some resource, during calculation we might arrive at a different quantity or time
than requested, so we introduce qk or tk as the resulting quantity and time from price
calculation for resource k. We do not take the request parameters as filter criteria for
tariffs, but as a minimum requirement. We take this approach because we do not know ex
ante if a tariff with more resources or a longer period is more expensive or even cheaper
(e.g. if a request states 11 months of run-time, a 1-year reservation-based tariff probably
is favorable). Therefore, we compute all tariffs that fulfill the minimum requirements
and then compare total costs of all tariffs.

A consumer might not utilize resources for the full duration of T . After all, the
flexibility and scalability of resource usage and costs is a major advantage of cloud
infrastructure which we may not neglect. Therefore, we define a target utilization rate
κ with 0 < κ ≤ 1 which models the share of T when the resources are actually in use.
For example, κ = 0.75 means that a VM is online 75% of the time or 18 hours a day.
Initially, for each single price, we set qk = Qk and tk = κT with a default value of κ = 1.
In addition, for proper discount determination, we need to know if the user is willing to
pay in advance for a tariff. If so, the parameter θ is set to 1 which is the default.

5.2.2. Pricing

Table 3 contains the attributes of the Price entity which models the data and condi-
tions necessary for price calculation. Besides the price itself (netamount) in a defined
currency, prices have two dimensions as denominators – quantity and time (e.g. giga-
byte per month for an amount of traffic in a specific period). One of them or both can be
missing, e.g. if quantity is missing, we only have ”EUR/hour” or for a one-time fixed
fee, both quantity and time would be missing and we would only have ”EUR”. To keep

17

Table 2: Request parameters for price calculation

Parameter Description
Qk Requested quantity of a resource k
qk Effective quantity of resource k from price calculation
tk Effective time period of resource k from price calculation
T Requested usage period for the deployment
κ Planned utilization of resources during T
θ Equals 1 (true) if user accepts prepayment (default)

Table 3: Price properties

Field Description Symbol

name Display name of the price (e.g. ”Base fee”)
netamount The net value for this price
currency Currency of price (ISO 4217 code)
quantity Quantity denomination for this price
time Time denomination for this price
validityPeriod Period for which this price is valid fv
applicabilityRange The quantity range for which this price is applicable fa
partitionRange Quantity share for which this price is valid q
bookingPeriod Required minimum booking period for this price

(e.g. 1 year)
t

minimumCharge Indicates if this price nominates a minimum charge pi

price modeling flexible for different quantity units, we introduce a type parameter for
the quantity unit to the Price type so it can be instantiated with any necessary quantity
unit (using the auxiliary types for quantity we defined in Appendix A.1).

Equation 8 shows the computation of a single price pi from its components. Every
single price pi of a TariffItem is evaluated on its own (Equation 8) and afterwards all
results are aggregated to the total TariffItem cost cj (Equation 9) Besides quantity

and time, Price also contains the conditions we mentioned in Section 4.2 which we
formalize below.

applicabilityRange The filter flag fa indicates if the price pi is valid for the quantity
Qk. If applicabilityRange is set (checked by ∃ function) and the quantity Qk is outside
of the bounds, fa switches to 0 and thus pi is 0 as well (cf. Equation 8).

fa =(1− ∃applicabilityRange)+

(applicabilityRange < Qk) ∗ (Qk ≤ applicabilityRange)
(4)

18

partitionRange For partitioned pricing, this attribute contains a quantity range for
which the current price pi is valid. In contrast to applicabilityRange which denotes the
price for the total quantity, partitionRange indicates a price for the share of the quan-
tity within this range. The usage of fields applicabilityRange and partitionRange

is mutually exclusive.
If the current price pi is a partitioned price, the calculation quantity qk defines the

quantity share for the current price pi. First, we check for existence of a partitioned
price. If it is not defined, we stick with the total purchase quantity Qk. Otherwise, we
compute the share of Qk to apply for the current price with the second term.

qk =(1− ∃partitionRange) ∗Qk+

|max(Qk − partitionRange, 0)−max(Qk − partitionRange, 0)|
(5)

We distinguish three cases which are captured by Equation 5:

1. Qk < partitionRange < partitionRange: The purchase quantity is below the
partition range which means the first parameter of both max functions is < 0 and
the quantity share qk results to 0.

2. partitionRange < Qk < partitionRange: The purchase quantity lies within the
range, but not above the upper limit and the resulting quantity share within the
range is qk − partitionRange.

3. partitionRange < Qk: The purchase quantity is above the range, so the full
quantity of partitionRange− partitionRange needs to be applied to the price.

bookingPeriod This field indicates the minimum time period which applies for the
price. We consider this period when computing cost.

To determine the correct calculation period t for the price pi, we use either the target
period κT or the bookingPeriod opposed by the price conditions – whichever is larger
(Equation 6). If a period from previously processed prices has already imposed a longer
period, we keep the longer period of all periods (max(t∗)) as we assume that all resources
of a request are consumed for the same period.

t = max(κT, bookingPeriod,max(t∗)) (6)

validityPeriod We keep track in which calender period a price has been valid and
only currently valid prices will be considered in cost computation. Quite frequently,
providers lower prices, but keep the technical offer as is which means we just add prices
with a new validity period and let the old ones expire. As a side effect, we keep track of
a pricing history which is useful for e.g. trend or industry analyses.

The filter flag fv equals 1 if the price pi is currently valid given its validityPeriod.
Otherwise, it is 0 which removes outdated prices. now returns the current time.

fv = (validityPeriod ≤ now) ∗ (now ≤ validityPeriod) (7)

19

Table 4: Discount properties

Field Description

name Display name of the discount (e.g. ”Prepay discount”)
discountFactor Factor to apply on cost when discount is applicable
scope Applicable level (Resource vs. Tariff)
utilizationRange Target Utilization to apply discount
spendRange Target spend range to apply discount
prepay Discount applies when cost are paid in advance
committedPeriod Minimum booking period to apply discount

minimumCharge This is a boolean indicator classifying the current price as a minimum
consumption amount. For price calculation, it means that the resulting cost for the
tariff will always be at least as high as the netamount of the price flagged as minimum
charge price, which we denote as pminimumCharge. If the computed tariff cost CT+ is above
pminimumCharge, the latter has no further effect.

Finally, Equation 8 shows the actual single price computation applying the determined
quantity and time and the control flags as defined above. If the price is not valid, not
applicable for the quantity or a minimum charge, pi = 0. Otherwise, the determined
quantity q and t are normalized with the denominating quantity and time of the price
(e.g. 10 GB per 1 GB or 24h per 1 month) to apply the right factor on netprice. The
factor (1− minimumCharge) ensures that a price flagged as minimum charge will not be
added to the total item costs cj , but used later for comparison in Equation 9.

pi = fv ∗ fa ∗ (1− minimumCharge) ∗ netprice ∗ q

quantity
∗ t

time
(8)

The resulting cost cj for the TariffItem now is either the sum of all single prices pi
or pminimumCharge, whichever is higher:

cj = max(
n∑

i=1

pi, pminimumCharge) (9)

5.2.3. Discount Modeling

We apply discounts in a separate step after all costs have been calculated to decrease
complexity and because the total cost influences the achievable discounts. At the core,
there is a discountFactor stating the percentage decrease of a cost base if the discount
applies. Note that also negative discountFactorss are possible in case surcharges needs
to be modeled.
Discounts have a scope stating to which cost aggregate they apply. We distinguish Re-

source and Tariff scope which signal to apply discountFactor either to the TariffItem
costs cj or to the total cost of the Tariff, CT+, respectively. We define γ as the relevant
cost base for discounts as

20

γ =

{
cj , if scope = RESOURCE

CT+, if scope = TARIFF
(10)

We distinguish the following discount conditions represented by the defined control
variables δx. If a condition is not specified (checked by the ∃ function), the value of the
control variable switches to 1 because a restriction which is not set, is fulfilled:

Spend Range If providers grant a discount when a consumer reaches certain spend
levels within a month, the discountFactor is applicable if the relevant spend γ is
within the range:

δs =(1− ∃spendRange)+

(spendRange < γ) ∗ (γ ≤ spendRange)
(11)

Period Commitment We consider a discount on a commitment for a certain time period
as applicable when the period commitment is not longer than the purchase period T (see
5.2.1):

δt = (1− ∃committedPeriod) + (committedPeriod ≤ T) (12)

Utilization Range The discountFactor applies if the user reaches a certain range of
monthly utilization. To control this discount, we define a rule against the user’s target
utilization κ:

δu =(1− ∃utilizationRange)+

(utilizationRange < κ) ∗ (κ ≤ utilizationRange)
(13)

Prepay We introduce a control flag δp which switches to 0 if and only if the discount
requires prepayment (prepay = 1), but the user denied to pay in advance in the request
(θ = 0, see 5.2.1):

δp = 1− prepay ∗ (1− θ) (14)

The smallest scope level to apply discounts is on resource level, i.e. based on the
cost of a TariffItem (cf. Figure 4). To achieve the resulting monetary value dj for a
TariffItem with h discounts attached, we calculate:

dj =
h∑

i=1

(δs ∗ δt ∗ δu ∗ δp ∗ discountFactor ∗ γ) (15)

21

Table 5: Sample tariff 1 to model with the OTM

Tariff Component Configuration

Name m3.large, Reserved 1 year, Partial Upfront
Datacenter Frankfurt, Germany
VM 2 CPUs, 7.5 gigabytes, 32 GB SSD Storage
Price Upfront Payment: $492, Hourly Rate: $0.054

If all defined conditions are met, the latter term in Equation 15 applies the given
discountFactor to the appropriate cost base γ. Equation 3 shows the aggregation of
discounts to the total reduction D which we apply in Equation 1 to arrive at net cost
CT (after discounts) for this tariff.

Please note that we are able to add further discount conditions by defining appropriate
control flags and extend the discount computation. Also additional scope levels for
discounts such as Provider- or Data Center -level are easy to extend.

6. Model Application

We chose a tariff to demonstrate the application of the OTM on a real-world example
and how to map the different properties into the OTM structure. We use Java-style
code samples to provide a transparent demonstration of the model application. Along
with our explanation, we show only relevant code samples while the full listing for the
tariff example is in Appendix B (we provide line numbers for reference). For a real-world
application, one would create a tariff editor supporting batch definition of tariffs to make
data collection more efficient. Also, a user interface to specify requests against the tariff
data base and browse results would be necessary for an end-user application.

As the market leader, AWS plays a reference role in the IaaS market and hence we
want to demonstrate how a tariff of this provider would appear in the OTM. We chose
the m3.large tariff [Amazon Web Services, 2015] in its 1-year reservation-based variant.
If the Provider and the DcLocation should not exist in the database, we instantiate
both and assign the data center to the provider (App. B, 2-4). Other properties to
set in a real-world case would be geographic location or address of the DC (Frankfurt,
Germany in this case) and contact information for the provider.

6.1. Tariff modeling

6.1.1. Resources

Before we create the actual Tariff, we define all the resource that are used together
with Prices to build TariffItems. The Tariff then holds a list of TariffItems which
belong together as defined by the provider’s offer.

22

VM Creating the VmResource for this tariff is straight-forward – we just need to create
the instance and set the properties applying the correct QuantityUnits (see App. A.1).

8 VmResource vm = new VmResource ();

9 vm.setCpuCores(new CpuCore (2));

10 vm.setRamResource(new GB(7.5));

Storage Regarding the StorageResource, we need to flag it as internal VM storage,
set the size and register it as an SSD drive. The internal storage has a fixed size of
32 GB, hence we set it as the instance size. As there is no choice about the size of the
drive, the validValue property is also set to the actual size. If there would be choices,
we could add them to the list of valid values to indicate this choice.

13 StorageResource storage = new StorageResource ();

14 storage.setSubtype(StorageResource.INTERNAL);

15 storage.setSize(new GB(32));

16 storage.setSsd(true);

17
18 storage.setValidValues(new ValueRange(new GB(32)));

Traffic As stated in section 5.1, we only distinguish between incoming and outgoing
traffic, indicated by the marker values TrafficResource.INGRESS and TrafficResource.EGRESS.
AWS does not impose a restriction on the amount traffic, so we do not need to specify
any validValues.

21 TrafficResource inTraffic = new TrafficResource ();

22 inTraffic.setDirection(TrafficResource.INGRESS);

23
24 TrafficResource outTraffic = new TrafficResource ();

25 outTraffic.setDirection(TrafficResource.EGRESS);

Operating System, NetworkResource AWS offers many different operating system
images for which we would need to create separate resource instances each. We apply a
default Linux OS for this example and register it as an Linux OS by setting the family to
OsResource.LINUX (App. B, 28-31). For a network component, we model the option of
assigning a static IP address to the VM as a NetworkResource (App. B, 34-35). Again,
there is no explicit restriction on the number of IP addresses, thus no further quantity
restrictions need to be specified.

6.1.2. Pricing

Now that the technical resources have been defined, we model the commercial part of the
tariff. To do so, we create a TariffItem which assigns one or more prices and discounts
(if applicable) to a resource. The collection of all items builds up the Tariff.

The reservation-based tariff runs for one year and consists of a partial upfront payment
and a reduced hourly rate (compared to the on-demand tariff). We create the Tariff

23

and assign it to the respective DcLocation and Provider (App. B, 39-41). After creating
a TariffItem, we set the corresponding properties and assign the VmResource and the
Prices to the TariffItem which we add to the Tariff.

As the StorageResource is included in the VM price, we give it a price of 0 with the
same booking period as the VM (App. B, 66-75).

44 TariffItem vmItem = new TariffItem ();

45 vmItem.setResource(vm);

46
47 Price upfront = new Price("Upfront payment");

48 upfront.setCurrency("USD");

49 upfront.setNetAmount (492);

50 upfront.setBookingPeriod(new Year (1));

51
52 vmItem.addPrice(upfront);

53
54 Price hourly = new Price("Hourly rate");

55 hourly.setCurrency("USD");

56 hourly.setNetAmount (0.054)

57 hourly.setPerQuantity(new Count (1));

58 hourly.setPerTime(new Hour (1));

59 hourly.setBookingPeriod(new Year (1));

60
61 vmItem.addPrice(hourly);

62
63 tariff.addItem(vmItem);

For TrafficResource, we show an example of quantity dependent pricing. We use
the partitionRange attribute of Price to assign the correct price for each quantity
of traffic. If the overall traffic amount per month would determine the price for all the
traffic, we would need to use applicabilityRange instead. To specify the valid quantity
range for this price we utilize the auxiliary entity ValueRange (App. A.2). Also we apply
the DataUnit hierarchy (App. A.1) which allows us to mix units like GB and TB (as values
are noted in the provider’s tariff list) but ensures that correct conversion will take place.
As all ingress is free, we set its price to 0 (App. B, 81-86).

89 TariffItem egressItem = new TariffItem("Egress");

90 egressItem.setResource(outTraffic);

91
92 // Egress differs per quantity

93 Price firstgb = new Price("Egress , First GB");

94 firstgb.setCurency("USD");

95 firstgb.setNetAmount (0);

96 firstgb.setPerQuantity(new GB(1));

97 firstgb.setPerTime(new Month (1));

98 firstgb.setPartitionRange(new ValueRange <DataUnit >(new GB(0), new GB

(1)));

99 egressItem.addPrice(firstgb);

100
101 Price upTo10Tb = new Price("Egress , 1GB -10TB");

102 upTo10Tb.setCurrency("USD");

24

Table 6: Reserved Instance Volume Discounts of AWS

Reserved Instance Turnover Discount Rate

<$500,000 0%
$500,000 - $4,000,000 5%
$4,000,000 - $10,000,000 10%

103 upTo10Tb.setNetAmount (0.09);

104 upTo10Tb.setPerQuantity(new GB(1));

105 upTo10Tb.setPerMonth(new Month (1));

106 upTo10Tb.setPartitionRange(new ValueRange <DataUnit >(new GB(1), new TB

(10)));

107 egressItem.addPrice(upTo10Tb);

For further resources like OS and Static IP, we apply similar commands to complete
the pricing model of the tariff (App. B, 120-137).

6.1.3. Discounts

Regarding discounts, we like to model the Reserved Instance Volume Discounts (see
Table 6). This is a simple volume discount on turnover. The first line of Table 6 has
no effect as the discount rate is 0%, so we model the first discount for the second line
(Table 6). As this discount applies only to the reserved instance turnover, we set its
scope to RESOURCE (cf. 5.2.3) and then add it to the VM tariff item. The creation
of the last discount stage in Table 6 is identical, but with adjusted values (App. B,
147-152).

140 Discount discount1 = new Discount("500k-4000k");

141 discount1.setSpendRange(new ValueRange <Double >(500000 ,4000000));

142 discount1.setDiscountFactor (0.05);

143 discount1.setScope(Discount.RESOURCE_LEVEL)

144
145 vmItem.addDiscount(discount1);

Now as we have created the tariff structure in the OTM, we are able to use it for cost
estimates. For other tariffs, the next steps works identically, applying the semantics of
the model and hence enabling a uniform cost estimation of all tariffs once they have
gone to the above steps of mapping their resource and pricing into the OTM.

6.2. Sample calculation

To show how cost estimation works, we assume a simple request (Table 7). All values
not specified in the request stay at their default and do not serve as restrictions, e.g. it
does not matter if the tariff has a NetworkResource or if it offers a prepaid option or
not (θ missing).

The first step is the matching of requested resources against the tariff. As we can
easily see, the tariff’s VM size is sufficient for the requested VmResource (because it has

25

Table 7: Sample Request to AWS tariff

Resource/Parameter Value

VmResource CPU=CpuCores(2), RAM=GB(6)
StorageResource GB(20)
Outgoing Traffic GB(100)/Month(1)

T Month(10)
κ 1

at least 2 CPU cores and 6 GB RAM), dito for the StorageResource. As the tariff does
not restrict traffic volume, this is a match as well.

6.2.1. Cost estimation

For price calculation, we start with the VmResource and apply Equation 8 to the first
price (upfront in 6.1.2). We assume the price is currently valid (fv = 1) and no
applicabilityRange is set (fa = 1). The price is also no minimum charge, so we focus
on the quantity and time factors. We requested one VM and thus q = Q = quantity =
Count(1). For t, we apply Equation 6 which results in t = max(1∗Month(10), Year(1))
and hence t = Year(1). Applied to Equation 8, we achieve

p1 = 1 ∗ 1 ∗ 1 ∗ 492 ∗ 1

1
∗ Year(1)
Year(1)

= 492

The second price (hourly) p2 of VmResource, when inserted in Equation 8:

p2 = 1 ∗ 1 ∗ 1 ∗ 0.054 ∗ 1

1
∗ Year(1)
Hour(1)

= 473.04

p2 is the last price for the VM TariffItem so we aggregate the price positions to the
first TariffItem’s total cost:

c1 = p1 + p2 = 492 + 473.04 = 965.04

As mentioned above (6.1.2), the StorageResource has a netamount of 0, so its only
price p1 = 0 and c2 = 0. For traffic, we need to apply partitioned pricing which we start
with the first price. Before, we need to determine the partition quantity by Equation 5:

q1 = |max(GB(100)− GB(0), 0)−max(GB(100)− GB(1), 0)|
= |GB(100)− GB(99)| = GB(1)

When we apply Equation 8 to this quantity for the first price (firstgb) of TariffItem 3,
we arrive at p1 = 0, as the netamount of this price is 0. For the second price partition,
we use again Equation 5 for the partition quantity. Because the first parameter of the
second max function is negative, it evaluates to 0 (the second parameter):

26

q2 = |max(GB(100)− GB(1), 0)−max(GB(100)− TB(10), 0)|
= |GB(99)− 0| = GB(99)

We use this result to compute the price p2 using Equation 8 with the period of one
year determined by the run of VmResource:

p2 = 1 ∗ 1 ∗ 1 ∗ 0.09 ∗ GB(99)
GB(1)

∗ Year(1)

Month(1)

= 0.09 ∗ 99 ∗ 12 = 106.92

Again, we arrived at the last price for this TariffItem and thus we total the cost:

c2 = p1 + p2 = 0.00 + 106.92 = 106.92

Now we processed all TariffItems and use Equation 2 to compute total tariff costs
before deduction of discounts CT+ which closes the pricing computation:

CT+ = c1 + c2 + c3 = 965.04 + 0.00 + 106.92 = 1071.96

6.2.2. Discounting

After we finished the price computation, we examine applicable discounts. We have
two discounts on RESOURCE level for the VM TariffItem, hence the discount base
γ = c1 = 965.04.

Using Equation 15, we determine the absolute rebate after determining the discount
flags δx. As we only specified spendRange, δt = δu = δp = 1 by definition. For δs, we
get

δs = (500, 000 < 965.04) ∗ (965.04 ≤ 4, 000, 000) = 0

which results in d1 = 0 for Discount 1 using Equation 15. Likewise, we arrive at
d2 = 0 for the second discount which is, obviously, the correct result as the spend
of 965.04 is below the minimum of 500,000. As these are all modeled discounts, we
arrive at a total discount value of D = 0, i.e. none of the discounts are applicable.
Finally, the net tariff cost for the given sample request upon the tariff example results
to CT = CT+ −D = CT+ = 1071.96.

This was a simplified sample case for a tariff which is easy to compute manually. But
with growing number of providers, datacenters, tariffs, resources, options and prices, the
computation becomes tedious and more complicated. Here, a decision support system
implementing the OTM model can help to compare offers more efficiently and arrive at
more precise cost estimates for infrastructure setups.

27

7. Conclusion

In this paper, we proposed a flexible and powerful description model for cloud service
offers. It provides a lightweight structure with only a few entities that serve as building
blocks for complex tariff structures. It is also extensible either by adding additional
properties to the resource types or by introducing new entities for future types of cloud
services. Auxiliary types, such as a generic modeling of quantity and time provide an
abstract interface for resource and tariff processing and ensure consistent conversion and
computation.

With our work, it is now possible to collect heterogeneous tariff data in a common
model for decision processes or other analytical purposes. This has an enabling effect for
future work in this area. For researchers, an extensive database of detailed market data
based on the OTM provides a rich foundation for insights into market development,
segmentation, provider behavior, technology leadership, success of product portfolios
etc. In addition, the development of rich decision support technologies based on the
OTM as a language to model this complex market and provide the necessary data to
feed these systems.

Applications for practitioners include sourcing decision support such as vendor com-
parison or make-or-buy analyses. To gain deeper insights into the cloud infrastructure
market, the OTM provides a database to analyze market segmentation and vendor port-
folios, pricing politics and price development. Specifically, for cloud providers, it provides
data for product and price comparisons, e.g. by computing prices of different standard
portfolios and analyze the effects of the own pricing scheme.

The OTM is also suitable for broker systems which support sourcing decisions (e.g.
[Cunha et al., 2013,Gottschlich et al., 2014]) by automating request for proposal (RFP)
processes. The resources hierarchy serves to formulate the required demands which the
system processes for every provider tariff to get a cost estimate. By using the same
resource types for querying and storing the data, we can encapsulate the matching
logic with the specific resource type (i.e. a VmResource decides if it matches another
VmResource) and keep the processing logic abstract on GenericResource level. Thus, we
contain the extensibility property of the OTM, but do not need to adjust the matching
logic when new resources are introduced. The pricing logic is also generic for the involved
quantities and resources and hence does not hinder resource extensions.

As performance of cloud services differ, for a comprehensive decision for a certain
product, the price comparison provided by our model needs to be complemented by
benchmarks to ensure a proper performance comparison. For IaaS, we can use bench-
mark tools for CPUs, storage etc. to derive performance metrics (cf. e.g. [Gottschlich
et al., 2014]). Those metrics could then be included in the model to query for certain
minimum requirements in terms of performance. For suitable performance-related ser-
vice comparison tests see e.g. [Li et al., 2010,Silva et al., 2013,Cunha et al., 2013,Gillam
et al., 2013].

The proposed model and the method of its creation also serve as an example or
template for other markets with complex products, e.g. RFPs for buildings in the
construction sector. There, we also have many single tasks which might differ in details

28

and quality (e.g. which materials to use for thermal isolation) and include certain price
components or not. In the end, a meaningful combination of the elementary tasks and
a proper aggregation of costs is necessary to arrive at a completed building – just like a
working IT infrastructure requires many components to work together properly.

References

[Akerlof, 1970] Akerlof, George a 1970. The Market for ”Lemons”: Quality Uncertainty
and the Market Mechanism. The Quarterly Journal of Economics, 84(3):488–500.

[Amato & Venticinque, 2013] Amato, Alba, & Salvatore Venticinque 2013. Multi-
objective decision support for brokering of cloud SLA. In Proceedings - 27th Interna-
tional Conference on Advanced Information Networking and Applications Workshops,
WAINA 2013, pages 1241–1246. IEEE.

[Amazon Web Services, 2015] Amazon Web Services 2015. AWS — Amazon EC2 —
Pricing. In https://aws.amazon.com/ec2/pricing/.

[Centron GmbH, 2015] Centron GmbH 2015. Preise :: Cloud Hosting ccloud Preise. In
https://www.centron.de/produkte/cloud-hosting/ccloud/preise.html.

[Cunha et al., 2013] Cunha, Matheus, N Mendonça, & A Sampaio 2013. A Declarative
Environment for Automatic Performance Evaluation in IaaS Clouds. In Proceedings
of the 2013 IEEE Sixth International Conference on Cloud Computing, pages 285–292.

[DMTF, 2013] DMTF 2013. Cloud Infrastructure Management Interface (CIMI) Model
and RESTful HTTP-based Protocol - An Interface for Managing Cloud Infrastructure.
Technical report, Distributed Management Task Force, Document DSP0263, Version
1.1.0.

[El Kihal et al., 2012] El Kihal, Siham, Christian Schlereth, & Bernd Skiera 2012. Price
comparison for infrastructure-as-a-service. In ECIS 2012 Proceedings, pages 1–12,
Paper 161.

[Garg et al., 2011] Garg, Saurabh Kumar, Steve Versteeg, & Rajkumar Buyya 2011.
SMICloud: A Framework for Comparing and Ranking Cloud Services. In 2011 Fourth
IEEE International Conference on Utility and Cloud Computing, number Vm, pages
210–218. Ieee.

[Garg et al., 2013] Garg, Saurabh Kumar, Steve Versteeg, & Rajkumar Buyya 2013. A
framework for ranking of cloud computing services. Future Generation Computer
Systems, 29(4):1012–1023.

[Gillam et al., 2013] Gillam, Lee, Bin Li, John O’Loughlin, & Anuz Pratap Tomar 2013.
Fair Benchmarking for Cloud Computing systems. Journal of Cloud Computing:
Advances, Systems and Applications, 2(1):6.

29

[Glaser & Strauss, 2009] Glaser, Barney G, & Anselm L Strauss 2009. The discovery of
grounded theory: Strategies for qualitative research. Transaction Publishers.

[Google, 2015] Google 2015. Google Compute Engine Pricing - Compute Engine. In
https://cloud.google.com/compute/pricing.

[Gottschlich et al., 2014] Gottschlich, Jörg, Johannes Hiemer, & Oliver Hinz 2014. A
Cloud Computing Broker Model for IaaS Resources. In ECIS 2014 Proceedings, pages
1–15, Track 10, Paper 8.

[Hevner et al., 2004] Hevner, Alan R., Salvatore T. March, Jinsoo Park, & Sudha Ram
2004. Design science in information systems research. Mis Quarterly, 28(1):75–105.

[Li et al., 2010] Li, Ang, Xiaowei Yang, Srikanth Kandula, & Ming Zhang 2010. Cloud-
Cmp: Comparing Public Cloud Providers. In Proceedings of the 10th annual confer-
ence on Internet measurement - IMC ’10, pages 1–14, New York, New York, USA.
ACM Press.

[Menzel et al., 2013] Menzel, Michael, Marten Schönherr, & Stefan Tai 2013. (MC2)2
: criteria, requirements and a software prototype for Cloud infrastructure decisions.
Software: Practice and Experience, 43(11):1283–1297.

[Metsch & Edmonds, 2011] Metsch, T, & Andy Edmonds 2011. Open Cloud Computing
Interface - Infrastructure. Technical report, Open Grid Forum, GFD-P-R.184,, Ver.
1.1.

[Moore, 2015] Moore, Susan (Gartner) 2015. Gartner Says Worldwide Cloud
Infrastructure-as-a-Service Spending to Grow 32.8 Percent in 2015. In
http://www.gartner.com/newsroom/id/3055225.

[Nobel, 2011] Nobel, Rickard 2011. Storage performance: IOPS, latency and through-
put. In http://rickardnobel.se/storage-performance-iops-latency-throughput/.

[Patiniotakis et al., 2014] Patiniotakis, Ioannis, Yiannis Verginadis, & Gregoris Mentzas
2014. Preference-based cloud service recommendation as a brokerage service. In
Proceedings of the 2nd International Workshop on CrossCloud Systems - CCB ’14,
pages 1–6, Paper 5.

[Preimesberger, 2015] Preimesberger, Chris 2015. Big Four IaaS Providers Now Own
Half the Market. In Eweek, http://www.eweek.com/cloud/big-four-iaas-providers.

[ProfitBricks, 2015] ProfitBricks 2015. Cloud Pricing - Save on Cloud Server Pricing —
ProfitBricks.

[Rehman et al., 2011] Rehman, Zia Ur, Farookh K. Hussain, & Omar K. Hussain 2011.
Towards Multi-criteria Cloud Service Selection. 2011 Fifth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing, pages 44–48.

30

[Repschlaeger et al., 2013] Repschlaeger, Jonas, S Wind, R Zarnekow, & Klaus Turowski
2013. Decision Model for Selecting a Cloud Provider: A Study of Service Model
Decision Priorities. In AMCIS 2013 Proceedings, pages 1–11, Paper 27.

[Roovers et al., 2012] Roovers, Joris, Kurt Vanmechelen, & Jan Broeckhove 2012. A
reverse auction market for cloud resources. In Economics of Grids, Clouds, Systems,
and Services - 8th International Workshop, GECON 2011, Paphos, Cyprus, December
5, 2011, Revised Selected Papers, pages 32–45.

[Siebenhaar et al., 2011] Siebenhaar, Melanie, Ulrich Lampe, Tim Lehrig, Z Sebastian,
Stefan Schulte, & Ralf Steinmetz 2011. Complex Service Provisioning in Collaborative
Cloud Markets. In Abramowicz, Witold, Ignacio M. Llorente, Mike Surridge, Andrea
Zisman, & Julien Vayssière (eds), Towards a Service-Based Internet - 4th European
Conference, ServiceWave 2011, Poznan, Poland, October 26-28, 2011. Proceedings,
volume 6994 of Lecture Notes in Computer Science, pages 88–99. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[Silva et al., 2013] Silva, Marcio, Michael R. Hines, Diego Gallo, Qi Liu, Kyung Dong
Ryu, & Dilma Da Silva 2013. CloudBench: Experiment Automation for Cloud Envi-
ronments. 2013 IEEE International Conference on Cloud Engineering (IC2E), pages
302–311.

[Simon, 1996] Simon, H. A. 1996. The Sciences of the Artificial. MIT Press, Cambridge,
MA, 3rd editio edition.

[The Cloud Service Measurement Initiative Consortium (CSMIC), 2011] The Cloud
Service Measurement Initiative Consortium (CSMIC) 2011. Service Measurement
Index Introducing the Service Measurement Index (SMI).

[Wang et al., 2013] Wang, Wei, Di Niu, Baochun Li, & Ben Liang 2013. Dynamic Cloud
Resource Reservation via Cloud Brokerage. In 2013 IEEE 33rd International Confer-
ence on Distributed Computing Systems, pages 400–409. IEEE.

A. Auxiliary Entities

This section introduces some auxiliary entities for quantity and time modeling which are
necessary to connect resource consumption and price application. We introduce these
entities to enable an abstract quantity and time specification of resources and prices.
This enables us to keep the price computation generic and the model extensible for new
cloud service types which might bring their own units of measurement.

A.1. Quantity Modeling

We need to specify resource quantity in at least four contexts:

31

Figure 5: Auxiliary Quantity Model for OTM

1. To specify the granularity a provider offers (e.g. CPUs are available with 1, 2, 4,
8 and 16 cores). Those unit sizes for resource are either discrete (for cpu cores) or
continuous (e.g. capacity in gigabytes for storage or traffic).

2. For a particular resource instance, we need to store the actual capacity or size.
For example, if a VM contains 20 gigabytes internal storage, we need to store that
exact amount with the storage resource.

3. Prices usually apply to a certain quantity or capacity (e.g. GB) which needs to be
specified in a way compatible to resource quantity so that prices can be applied to
resources

4. When a specific request is made, the resource capacity desired by the user needs
to be quantified and stored with the resource.

The challenge for a common pricing model is to find a generic approach for different
units of measurement (e.g. 1000 GB traffic volume for TrafficResource or [2 cores; 8
GB RAM] for VmResource) which is also extendable as the model itself and still allows
for a generic processing of the different resource types and their prices.

Figure 5 shows the quantity model for the currently defined resource types (cf. 5.1).
All quantity types implement a common interface which provides the functionality to
generically handle quantity processing to match a request for resources and compute the
costs. Despite some identifying functionality (name, symbol etc.) this behavior includes:

Conversion Using the getFactor function with a convertible QuantityUnit, the inter-

32

face returns the appropriate conversion factor or null if the units are not convert-
ible.

Convertability The isConvertible function returns true if the given QuantityUnit is
convertible with the current one

Comparison The compareTo function implements an ordering function which checks if
the value of a given QuantityUnit instance is higher, lower or equal. Using this
helps e.g. to decide whether a certain resource configuration satisfies a requested
resource demand (cf. App. A.2).

DataUnit is the most interesting implementation of a QuantityUnit as it allows to
express storage sizes in any of the magnitudes commonly used (e.g. new GB(500);),
but ensures at the same time that they are correctly converted and compared to each
other. At the same time, we handle the issue that some providers use a factor of 1000
between mega-, giga- and terabyte and others use 1024 (210), also known as mebi-, gibi-
and tebibyte. By using the right unit on data entry, the implementation ensures correct
handling of sizes. CpuCore is a unit of measurement to label the count of CPU cores
correctly, e.g. when describing a VM configuration (cf. 6).

Some providers have prices based on IOPs (Input/Output operations), so we include
an appropriate QuantityUnit. Count serves as quantity for all countable resources (e.g.
static IP addresses). NoQuantity finally is a placeholder in case a Price has explicitly
no quantity unit defined (e.g. a simple monthly fee).

Besides using the QuanityUnit interface as data type to specify quantities within the
resources, we also use it as a type parameter for Price to express the unit of measurement
for the price – no matter how it is structured. Thus, the OTM is able to express resource
and billing quantities for future resource types as soon as they are defined. In addition
to the abstraction capabilities of the QuantityUnit, it also contribute to type safety
because they ensure we avoid inconsistencies in pricing (e.g. a price per IOP for a
RamResource).

A.2. ValueRange – specifying resource quantity ranges

The resource instances for a certain provider tariff contain a list of valid quantities, e.g.
for CpuResource it contains the list of the core quantities the provider offers, e.g. 2, 4, 8
or 16 cores. We need to match a resource demand against this list of values to arrive at
a valid granularity of resource configuration for a provider. A demand of 6 cores would
be satisfied by an 8-core machine if the provider does not offer 6-core machines. Other
resources might not have discrete values, but a continuous range of possible resource
configurations (e.g. storage is available in any amount between 1 and 1000 gigabytes).

To model these configurations, we introduce a data type ValueRange which tracks the
valid resource configurations for resources (cf. validValues in 5.1) and supports both
a discrete list as well as a continuous range of quantity. It takes a QuantityUnit as a
type parameter and is able to deliver a valid resource configuration when queried with
a resource demand. We use the functionality provided by the QuantityUnit interface

33

to manage this list (e.g. compareTo for ordering). ValueRange offers the following
functionality:

isWithin(QuantityUnit q) Returns true if value is present in the list

searchEqualOrHigher(QuantityUnit q) Returns the value of the list which is either
equal to parameter value or the next higher value from the list

searchEqualOrLower(QuantityUnit q) Returns the value of the list which is either equal
to parameter value or the next lower value from the list

searchClosest(QuantityUnit q) Returns either the same value if is in the list or the
closest next one, be it higher or lower

If the valid values for a GenericResource descendant is not defined, then there are
no restrictions (known) on the possible quantity amounts and the resource is available
in any quantity. We also use ValueRange to specify quantity ranges in Prices, e.g.
applicabilityRange (see 6). The functionality of ValueRange helps to efficiently and
generically check price configurations during cost calculation.

A.3. Time Modeling

Similar to the quantity modeling (App. A.1), we introduce a generic time entity, TimeUnit.
It ensures correct specification of time units throughout the whole data management
process from creation of tariff data to its application in price calculation. Consider for
example a price per week which should be specified as such in the tariff data. To arrive
at monthly cost, it needs to be converted to months which usually means an assump-
tion of four weeks per month. By providing explicit time periods, we can enter the
time specification exactly as the provider defined it and implement explicit assumptions
about conversion factors. This ensures consistent application of time periods for all uses
of tariff data and allows more flexibility for calculation purposes.

Therefore, we implemented the following time periods in our system, which inherit
from the parent type TimeUnit: Year, Month, Week, Day, Hour, Minute, Second. For a
simple application, we assume 4 Weeks or 30 Days per Month to convert time periods.
In a more advanced implementation, one might count the exact days for months when
applied to specific calendar dates. By modeling the appropriate time period announced
by the provider’s tariff, we avoid loss of information (by converting all times to e.g.
hours) and precise handling of time-related information.

B. OTM Application Listing

This section contains the full listing of the Java-style sample code of the OTM application
on an AWS tariff. While the code gives a precise definition on the objects’ states and
relations, for practical applications a more high-level interface would support a more
efficient conversion of the provider’s different tariff attributes into the OTM.

34

1 // Define Provider and DcLocation

2 Provider aws = new Provider("Amazon Web Services);

3 DcLocation dcffm = new DcLocation("Frankfurt", "Germany");

4 aws.addDcLocation(dcffm);

5
6 // Define Resources

7 // VM

8 VmResource vm = new VmResource ();

9 vm.setCpuCores(new CpuCore (2));

10 vm.setRamResource(new GB(7.5));

11
12 // Storage

13 StorageResource storage = new StorageResource ();

14 storage.setSubtype(StorageResource.INTERNAL);

15 storage.setSize(new GB(32));

16 storage.setSsd(true);

17
18 storage.setValidValues(new ValueRange(new GB(32)));

19
20 // Data Transfer

21 TrafficResource inTraffic = new TrafficResource ();

22 inTraffic.setDirection(TrafficResource.INGRESS);

23
24 TrafficResource outTraffic = new TrafficResource ();

25 outTraffic.setDirection(TrafficResource.EGRESS);

26
27 // Operating System

28 OsResource os = new OsResource ();

29 os.setFamily(OsResource.LINUX);

30 os.setVendor("AWS");

31 os.setVariant("Amazon AMI Linux");

32
33 // Static IP

34 NetworkResource ip = new NetworkResource ();

35 ip.setSubType(NetworkResource.STATIC_IP);

36
37 // Define tariffs and prices

38 // Tariff definition

39 Tariff tariff = new Tariff("m3.large , reserved 1 year , Partial Upfront");

40 tariff.setProvider(aws);

41 dcffm.addTariff(tariff);

42
43 // VM TariffItem

44 TariffItem vmItem = new TariffItem ();

45 vmItem.setResource(vm);

46
47 Price upfront = new Price("Upfront payment");

48 upfront.setCurrency("USD");

49 upfront.setNetAmount (492);

50 upfront.setBookingPeriod(new Year (1));

51
52 vmItem.addPrice(upfront);

53
54 Price hourly = new Price("Hourly rate");

35

55 hourly.setCurrency("USD");

56 hourly.setNetAmount (0.054)

57 hourly.setPerQuantity(new Count (1));

58 hourly.setPerTime(new Hour (1));

59 hourly.setBookingPeriod(new Year (1));

60
61 vmItem.addPrice(hourly);

62
63 tariff.addItem(vmItem);

64
65 // Storage TariffItem

66 TariffItem storageItem = new TariffItem ();

67 storageItem.setResource(storage);

68
69 Price storagefree = new Price("Included storage");

70 storagefree.setCurrency("USD");

71 storagefree.setNetAmount (0);

72 storagefree.setBookingPeriod(new Year (1));

73 storageItem.addPrice(storagefree);

74
75 tariff.addItem(storageItem);

76
77 // Data Transfer TariffItem

78 TariffItem ingressItem = new TariffItem("Ingress");

79 ingressItem.setResource(inTraffic);

80 // Ingress is free

81 ingressItem.setName("Ingress , >0GB");

82 Price ingress = new Price("Free Incoming Traffic");

83 ingress.setCurrency("USD");

84 ingress.setNetAmount (0);

85 ingressItem.setPrice(ingress);

86 tariff.addItem(ingress);

87
88 // Egress

89 TariffItem egressItem = new TariffItem("Egress");

90 egressItem.setResource(outTraffic);

91
92 // Egress differs per quantity

93 Price firstgb = new Price("Egress , First GB");

94 firstgb.setCurency("USD");

95 firstgb.setNetAmount (0);

96 firstgb.setPerQuantity(new GB(1));

97 firstgb.setPerTime(new Month (1));

98 firstgb.setPartitionRange(new ValueRange <DataUnit >(new GB(0), new GB(1)))

;

99 egressItem.addPrice(firstgb);

100
101 Price upTo10Tb = new Price("Egress , 1GB -10TB");

102 upTo10Tb.setCurrency("USD");

103 upTo10Tb.setNetAmount (0.09);

104 upTo10Tb.setPerQuantity(new GB(1));

105 upTo10Tb.setPerMonth(new Month (1));

106 upTo10Tb.setPartitionRange(new ValueRange <DataUnit >(new GB(1), new TB(10)

));

36

107 egressItem.addPrice(upTo10Tb);

108
109 Price next40Tb = new Price("Egress , 10TB -50TB");

110 next40Tb.setCurrency("USD");

111 next40Tb.setNetAmount (0.085);

112 next40Tb.setPerQuantity(new GB(1));

113 next40Tb.setPerMonth(new Month (1));

114 next40Tb.setPartitionRange(new ValueRange <DataUnit >(new TB(10), new TB

(50)));

115 egressItem.addPrice(next40Tb);

116
117 // ... and so on for all traffic price levels

118
119 // OS

120 TariffItem osItem = new TariffItem("OS");

121 osItem.setRessource(os);

122
123 Price osPrice = new Price("Standard Linux");

124 osPrice.setCurrency("USD");

125 osPrice.setNetAmount (0); // included

126
127 osItem.addPrice(osPrice);

128
129 // Static IP

130 TariffItem ipItem = new TariffItem("Static IP");

131 ipItem.setRessource(ip);

132
133 Price ipPrice = new Price("Static IP hourly surcharge");

134 ipPrice.setCurrency("USD");

135 ipPrice.setNetAmount (0.005);

136
137 ipItem.setPrice(ipPrice);

138
139 // Discount definition for VM revenue

140 Discount discount1 = new Discount("500k-4000k");

141 discount1.setSpendRange(new ValueRange <Double >(500000 ,4000000));

142 discount1.setDiscountFactor (0.05);

143 discount1.setScope(Discount.RESOURCE_LEVEL)

144
145 vmItem.addDiscount(discount1);

146
147 Discount discount2 = new Discount("4000k -10000k");

148 discount2.setSpendRange(new ValueRange <Double > (4000000 ,10000000));

149 discount2.setDiscountFactor (0.10);

150 discount2.setScope(Discount.RESOURCE_LEVEL);

151
152 vmItem.addDiscount(discount2);

37

